
Two Langevin equations in the Doi–Peliti formalism

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 J. Phys. A: Math. Theor. 43 125001

(http://iopscience.iop.org/1751-8121/43/12/125001)

Download details:

IP Address: 171.66.16.157

The article was downloaded on 03/06/2010 at 08:41

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/43/12
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 43 (2010) 125001 (12pp) doi:10.1088/1751-8113/43/12/125001

Two Langevin equations in the Doi–Peliti formalism

Kazunori Itakura1,2, Jun Ohkubo3 and Shin-ichi Sasa4

1 KEK Theory Center, IPNS, High Energy Accerelator Research Organization, 1-1 Oho,
Tsukuba, Ibaraki, 305-0801, Japan
2 Department of Particle and Nuclear Studies, Graduate University for Advanced Studies
(SOKENDAI), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
3 Institute for Solid State Physics, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa,
Chiba 277-8581, Japan
4 Department of Pure and Applied Sciences, University of Tokyo, Komaba, Tokyo 153-8902,
Japan

E-mail: kazunori.itakura@kek.jp, ohkubo@issp.u-tokyo.ac.jp and sasa@jiro.c.u-tokyo.ac.jp

Received 9 December 2009, in final form 2 February 2010
Published 4 March 2010
Online at stacks.iop.org/JPhysA/43/125001

Abstract
A system-size expansion method is incorporated into the Doi–Peliti formalism
for stochastic chemical kinetics. The basic idea of the incorporation is to
introduce a new decomposition of unity associated with the so-called Cole–
Hopf transformation. This approach elucidates a relationship between two
different Langevin equations; one is associated with a coherent-state path-
integral expression and the other describes density fluctuations. A simple
reaction scheme X � X + X is investigated as an illustrative example.

PACS numbers: 05.10.Gg, 05.40.−a, 82.20.−w

1. Introduction

System-size expansion methods were developed in the analysis of master equations for
stochastic chemical kinetics [1–4]. In these methods, under the assumption of an extensive
property of macroscopic quantities, fluctuation effects are systematically taken into account
by assuming the inverse of a dimensionless system size to be a small perturbation parameter.
The leading-order description of a system is provided as a deterministic equation for a density
variable due to the law of large numbers, and macroscopic fluctuations are described by a
Langevin equation which reduces to the deterministic equation in the limit of an infinite
system size.

The Doi–Peliti formalism is known as another standard technique, where master equations
are equivalently expressed in terms of a set of creation and annihilation operators [5, 6]. Since
the original proposal, many models have been analyzed within this formalism, as seen in a list
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of papers quoted in [7]. In particular, a coherent-state path-integral expression is useful for
theoretical study, because it takes a form similar to that for a continuum field theory [7–9].

Then, in some cases including an example discussed in this paper, the dynamical action of
a coherent-state path-integral expression becomes equivalent to that of a Langevin equation.
However, since this Langevin equation does not coincide with that obtained by system-size
expansion methods, it does not directly describe the stochastic time evolution of a density.
Note that this difference is not well recognized; indeed, as presented in a review paper
[10], a Langevin equation obtained by a coherent-state path-integral expression [11] has been
analyzed in the problems of fluctuating front propagation of some reaction–diffusion systems
as if it describes the time evolution of a density. (See however a different argument in [12].)

In order to resolve this confusing situation, in the present paper, we develop a system-size
expansion method for a coherent-state path-integral expression in the Doi–Peliti formalism.
Our consideration consists of three steps. In the first place, we express statistical quantities
in terms of a variable that is straightforwardly introduced in the coherent-state path-integral
expression. In addition to the presentation of such an expression, which was already discussed
in [9, 11], we shall provide a clear argument on the indirect correspondence between density
fluctuations and trajectories of the Langevin equation associated with the coherent-state path-
integral expression. In the second step, we seek a simple expression of density fluctuations
in terms of coherent states. Although it has been argued that such an expression would
be realized by a so-called Cole–Hopf transformation [13–16], the description involves non-
transparent procedures, as will be indicated in the beginning of section 4. Our main idea in
the present paper is to introduce a new decomposition of unity associated with the Cole–Hopf
transformation, by which we obtain a new path-integral expression. Finally, this expression
enables us to perform a system-size expansion, and it directly leads to the Langevin equation
describing density fluctuations.

This paper is organized as follows. In section 2, we introduce a model that we study within
the Doi–Peliti formalism. In order to make our presentation as instructive and transparent
as possible, we focus on a simple reaction scheme X � X + X in a single box under an
assumption that diffusion processes are sufficiently fast. In section 3, we review a coherent-
state path-integral expression, and derive the first type Langevin equation. In section 4, we
propose a new decomposition of unity, by which we derive the second type Langevin equation.
In section 5, we briefly discuss the effects of diffusion.

2. Model

Let � be a volume of a box in which particles are confined. We consider a chemical reaction
X + X � X; the duplication reaction X → X + X occurs with the ratio α for each particle,
and its backward reaction X + X → X occurs with the ratio β when two particles are close to
each other with less than a reaction length r0. We assume that a diffusion time is much smaller
than typical time scales of the reaction: α−1 and β−1, and ignore the effect of diffusion for
the time being (we will briefly discuss it in section 5). Then, since the probability of finding
another particle within a reaction region for a given particle is 4πr3

0

/
(3�), the rate of the

reaction X + X → X for each pair of particles becomes β4πr3
0

/
(3�). In the argument below,

a dimensionless quantity 4πr3
0

/
(3�) is replaced with 1/�, for notational simplicity. Now, let

Pn(t) be a probability of finding n particles at time t. The time evolution of Pn(t) is described
by the master equation
∂

∂t
Pn(t) = α[(n − 1)Pn−1(t) − nPn(t)] +

β

�
[n(n + 1)Pn+1(t) − n(n − 1)Pn(t)], (1)

where P−1(t) ≡ 0.

2
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The state of the system is specified by a vector |n〉, which represents a situation that
there are n particles in the system. Let V be a vector space spanned by an orthogonal set:
V = { |n〉 | n = 0, . . . ,∞}. A remarkable idea of the Doi–Peliti formalism [5, 6] is that a
series of infinite number of Pn(t) is collectively treated as a single vector in V:

|ψ(t)〉 =
∞∑

n=0

Pn(t)|n〉. (2)

Then, the master equation (1) is equivalently rewritten in a compact form

∂

∂t
|ψ(t)〉 = −Ĥ |ψ(t)〉, (3)

where Ĥ is an infinite-dimensional matrix. This matrix is expressed in terms of two matrices
â and â† defined by â|n + 1〉 = (n + 1)|n〉 and â†|n〉 = |n + 1〉 for any n (with â|0〉 = 0):

Ĥ = −α(â† − 1)â†â − β

�
(1 − â†)â†â2. (4)

The two matrices satisfy the bosonic commutation relations [â, â†] = 1 and [â, â] = [â†, â†] =
0. Since â† and â are similar to the creation and annihilation operators, and Ĥ is an analog of
the Hamiltonian, the Doi–Peliti formalism is also called the second-quantization method.

For any |v1〉 and |v2〉 in V, the inner product 〈v1|v2〉 is naturally defined by noting
〈m|n〉 = n! δm,n. There is a special vector |P〉 such that 〈n|P〉 = 1 for any n, which
is employed to express the expectation value of observables. This vector is explicitly
written as |P〉 = eâ† |0〉. Let A(x) be a polynomial of a variable x. We consider the
expectation value of A(n) at time t = τ , which is denoted by 〈A(n(τ))〉. By using the
vector |P〉, we write 〈A(n(τ))〉 ≡ ∑∞

n=0 A(n)Pn(τ ) = 〈P|A(â†â)|ψ(τ)〉. In order to
simplify this expression further, we define a polynomial A(x) associated with A(x) by
the relation 〈P|A(â†â) = 〈P|A(â). That is, A(â) is obtained by the normal ordering
of A(â†â). As an example, we demonstrate for the simplest non-trivial case A(x) = x2.
Since 〈P|(â†â)2 = 〈P|ââ†â = 〈P|(â2 + â), one finds A(x) = x2 + x. More generally, by
mathematical induction, one can prove that A(x) = xk for A(x) = x(x − 1) · · · (x − k + 1)

with any integer k. The final expression of the expectation value of A(n) at t = τ becomes

〈A(n(τ))〉 = 〈P|A(â)|ψ(τ)〉. (5)

3. Coherent-state path-integral expression

With the ‘second-quantized’ expression of the master equation (3), it is quite natural to consider
the path-integral form of the expectation value (5). In this section, we explain a procedure to
obtain a path-integral expression by using coherent states within the model (4). The result was
already obtained in [11], but we shall provide a slightly different presentation of the derivation.

Coherent states are eigenstates of the matrix â. They are in general written as

|z〉 ≡ ezâ† |0〉 (6)

with a complex number parameter z being the eigenvalue: â|z〉 = z|z〉. The corresponding
bra vector is denoted by 〈z|, that is, 〈z| = 〈0| ez∗â , where z∗ is the complex conjugate of z.
The following decomposition of unity plays an essential role in constructing a path-integral
expression with the coherent states:

1 =
∞∑

n=0

1

n!
|n〉〈n| =

∞∑
n=0

∞∑
m=0

1

n!
|n〉〈m|δm,n =

∫
d2z

π
e−|z|2 |z〉〈z|, (7)

3
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where we have used

δn,m =
∫

d2z

πn!
e−|z|2z∗mzn, (8)

with the integration measure d2z = d(Re z) d(Im z). See [7] and [9] for the path-integral
expression on the basis of (7).

Here, we note a different decomposition of unity

1 =
∫ ∞

−∞
dφ

∫ ∞

−∞

dϕ

2π
|φ〉〈−iϕ| e−iφϕ, (9)

where we have used the formula

δn,m = 1

n!

∫ ∞

−∞
dφ φn

(
− d

dφ

)m

δ(φ) = 1

n!

∫ ∞

−∞
dφ

∫ ∞

−∞

dϕ

2π
φn (iϕ)m e−iφϕ. (10)

Note that φ and ϕ are real variables. The path-integral expression on the basis of the
decomposition of unity (9) might be less familiar, but we remind readers that this expression
was presented in the seminal paper by Peliti [8]. It should be equivalent to the standard one
obtained by using (7). Indeed, when we employ the expression with (φ, iϕ), we can always
move to the standard expression by formally replacing (φ, iϕ) with (z, z∗). In addition, as
far as we understand, the expression obtained by (9) is more transparent in the sense that
the integration can be considered in an explicit manner. From these reasons, we review the
coherent-state path-integral expression by using (9).

The time integration of (3) yields

|ψ(τ)〉 = lim
�t→0

[exp(−Ĥ�t)]τ/�t |ψ(0)〉. (11)

We assume that an initial condition obeys a Poisson distribution with its average n̄0. The
initial state |ψ(0)〉 is then expressed as

|n̄0; Pois〉 ≡
∞∑
i=0

e−n̄0
n̄i

0

i!
|i〉 = en̄0(â

†−1)|0〉. (12)

For the moment, we focus on the case

αn̄0 − β

�
n̄2

0 > 0, (13)

and the other case will be discussed at the end of this section. By inserting the identity (9)
into (5) with (11) and (12), we express 〈A(n(τ))〉 as

〈A(n(τ))〉 = lim
�t→0

(
τ∏

t=0

∫ ∞

−∞
dφt

∫ ∞

−∞

dϕt

2π

)
〈P|A(â)|φt 〉

×
[

τ∏
t=�t

〈−iϕt | e−Ĥ�t |φt−�t 〉 e−iφtϕt

]
e−iϕ0φ0〈−iϕ0|n̄0; Pois〉, (14)

where the time index t runs from zero to τ in steps of �t . (We assume τ = N�t with the
integer N.) Since each term of Ĥ in (4) is arranged in normal order, we derive

〈−iϕt | e−Ĥ�t |φt−�t 〉 = 〈−iϕt |φt−�t 〉 exp(−H(iϕt , φt−�t )�t), (15)

where H(iϕt , φt−�t ) is defined by simply replacing â† and â in Ĥ with iϕt and φt−�t ,
respectively. We also have 〈−iϕt |φt−�t 〉 = exp(iϕtφt−�t ) , 〈P|A(â)|φτ 〉 = 〈1|φτ 〉A(φτ ) =
4
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A(φτ ) eφτ and 〈−iϕ0|n̄0; Pois〉 = exp (iϕ0n̄0 − n̄0) . By substituting these results into (14),
we obtain a path-integral expression

〈A(n(τ))〉 = lim
�t→0

(
τ∏

t=0

∫ ∞

−∞
dφt

∫ ∞

−∞

dϕt

2π

)
A(φτ ) exp [−S({iϕ}, {φ})] , (16)

where the ‘action’ S is calculated as

S({iϕ}, {φ}) = −φτ + iϕ0(φ0 − n̄0) + n̄0

+
τ∑

t=�t

�t

[
iϕt

φt − φt−�t

�t
− α((iϕt )

2 − iϕt)φt−�t − β

�
(iϕt − (iϕt)

2)φ2
t−�t

]
. (17)

Although S is a complex valued functional as it is, the integration with respect to ϕt in (16)
yields a real valued functional of φ. Here, the integration of ϕt in (16) is carried out from −∞
to +∞ along the real axis. We assume that the integration path can be shifted to the straight
line from −∞− i to +∞− i, keeping the integration value unchanged. This shift is equivalent
to the replacement of ϕt with ϕ̄t − i, where ϕ̄t is a real variable. Then, the action (17) becomes

S̃({iϕ̄}, {φ}) = iϕ̄0(φ0 − n̄0)

+
τ∑

t=�t

�t

[
iϕ̄t

φt − φt−�t

�t
− α((iϕ̄t )

2 + iϕ̄t )φt−�t +
β

�
(iϕ̄t + (iϕ̄t )

2)φ2
t−�t

]
. (18)

Next, we linearize the terms quadratic in ϕ̄t by introducing an auxiliary real variable yt:

exp
[
(iϕ̄t )

2
(
αφt−�t − (β/�)φ2

t−�t

)
(�t)

]
=
∫ ∞

−∞

dyt√
2π

exp

[
−1

2
y2

t + iϕ̄t

√
2(αφt−�t − (β/�)φ2

t−�t ) (�t)1/2 yt

]
. (19)

Note that this identity is valid only when

αφt−�t − (β/�)φ2
t−�t � 0. (20)

We conjecture that trajectories that do not satisfy this condition do not contribute the path-
integration in (16) under condition (13). See the discussion below (24). Finally, by employing
the Fourier transformation formula of Dirac’s delta function, we can rewrite (16) as

〈A(n(τ))〉 = lim
�t→0

(
τ∏

t=�t

∫ ∞

−∞
dφt

∫ ∞

−∞

dyt√
2π

e− 1
2 y2

t

)
A(φτ )

[
τ∏

t=�t

δ (
(φt , φt−�t , yt ))

]
φ0=n̄0

,

(21)

where


(φt , φt−�t , yt ) = φt − φt−�t −
(

αφt−�t − β

�
φ2

t−�t

)
(�t)

−
√

2

(
αφt−�t − β

�
φ2

t−�t

)
(�t)1/2yt . (22)

The equation 
 = 0 in the limit �t → 0 is expressed as

d

dt
φ = αφ − β

�
φ2 +

√
2

(
αφ − β

�
φ2

)
· η, (23)

5
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where the quantity η(t) defined as the continuum limit of yt/
√

�t is a white Gaussian noise
that satisfies

〈
η(t)η(t ′)

〉 = δ(t − t ′), and the symbol · in front of η represents the product in
the sense of Itô. Therefore, formula (21) with (22) is written as

〈A(n(τ))〉 = 〈A(φ(τ))〉φ , (24)

where 〈 〉φ represents the expectation value over noise sequences of the Langevin
equation (23). It should be noted that trajectories φ(t) generated by (23) with the initial
condition φ(0) = n̄0 satisfy αφ − (β/�)φ2 � 0 for any time t as discussed in [11]. Then, one
may obtain (18) starting from (23). This implies that the conjecture mentioned below (20) is
valid.

We choose A(n) = n/� in (24) as the simplest example. By setting u(t) = φ(t)/�, we
have 〈

n(τ)

�

〉
= 〈u(τ)〉u , (25)

where 〈 〉u represents the expectation value over noise sequences of the Langevin equation

d

dt
u = αu − βu2 +

√
2(αu − βu2)

�
· η. (26)

Surprisingly, the average behavior of the density n/� is exactly described by the Langevin
equation (26) for any �. The Langevin equation (26) supplemented with a diffusion term
is called the stochastic Fisher–Kolmogorov–Petrovsky–Piscounov (s-FKPP) equation, which
appears in several research fields [10] (for example, see [17] for applications to the problems
of high-energy hadron scattering). Historically, the s-FKPP equation for the chemical reaction
X � X + X was derived on the basis of the coherent-state path-integral expression with
the complex parameterization (z, z∗) [11] in studying non-trivial noise effects for front-
propagation [18, 19]. Here, it is worthwhile noting that φ does not correspond to the number
of particles, as we can see the difference between the two polynomials A and A that appear in
(24). It is only when we take the simplest case A(x) = x discussed in (25) that A(x) becomes
equivalent to A(x). Therefore, one must not interpret that (26) is the equation for a fluctuating
density. Indeed, (26) is different from that obtained by system-size expansion methods for the
master equation (1). (Compare (26) with (50) derived in the next section.)

At the end of this section, we address three technical remarks. First, we discuss the
validity of the assumption mentioned above (18). We do not have a mathematical proof for
the claim that the integration path can be shifted as such described there. However, this is
plausible because we can prove the result (24) in the following manner. It is sufficient to
consider the case where A(x) is given by Ak(x) = x(x − 1) · · · (x − k + 1) with an arbitrary
positive integer k. The corresponding polynomial A(x) becomes Ak(x) = xk . By taking the
kth derivative of the identity

∞∑
n=0

snn̄n
0

n!
= en̄0s (27)

with respect to s, and setting s = 1, we obtain
∞∑

n=0

n̄n
0 e−n̄0

n!
n(n − 1) · · · (n − k + 1) = n̄k

0, (28)

which means

〈Ak(n(0))〉 = Ak(n̄0). (29)

6
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Next, following the Itô formula, we find from the Langevin equation (23) for φ

d 〈Ak(φ)〉φ
dt

=
〈(

αφ − β

�
φ2

)
dAk(φ)

dφ

〉
φ

+

〈(
αφ − β

�
φ2

)
d2Ak(φ)

dφ2

〉
φ

= α 〈kAk + k(k − 1)Ak−1〉φ − β

�
〈kAk+1 + k(k − 1)Ak〉φ . (30)

On the other hand, by using the master equation (1), we can confirm that the differential
equation for d 〈Ak(n(t))〉 /dt has the structure identical with that of the right-hand side of
(30). This observation combined with (29) leads to 〈Ak(n(t))〉 = 〈Ak(φ(t))〉φ for any k at
any t. Since arbitrary polynomials can be expressed as a linear combination of {Ak}, (24) has
been proved.

Second, when n̄0 does not satisfy condition (13), the integration formula (19) is not
available. Therefore, result (24) with the Langevin equation (23) is valid only for the case
(13).

Finally, let us consider two time quantities such as 〈A(n(t1))A(n(t2))〉. In order to
calculate such a quantity, we need a path-integral expression of the conditional probability
P(n, τ |n0, 0). If we replace the Poisson initial condition with δ(n − n0), the path-integral
expression in this section becomes complicated.

4. Density fluctuations

In order to have a direct correspondence with density fluctuations in the coherent-state path-
integral expression, a nonlinear transformation in the action (17)

φ = ν e−χ , iϕ = eχ (31)

has been employed [9, 13–15], which is called the Cole–Hopf transformation. (In the standard
formulation with (z, z∗), (φ, iϕ) in (31) is simply replaced with (z, z∗).) Quite formally,
substituting (31) into (17), neglecting terms with third and higher powers of χ , expecting
cancellation of several terms appearing in contributions at t = τ , and avoiding considerations
on the integration path, one can obtain the dynamical action of a Langevin equation for the
variable ν/�. This Langevin equation coincides with that obtained by system-size expansion
methods.

Although the final result is plausible, it seems difficult to judge the validity of the
procedures. In particular, in the standard formulation with (z, z∗), there is no complex number
χ that would satisfy z = ν e−χ and z∗ = eχ , as easily checked for an example z = 1 + i. In the
formulation with (φ, iϕ), the integration path of χ is described by χ = log |ϕ| + iπsgn(ϕ)/2
with −∞ < ϕ < 0 and 0 < ϕ < ∞. The calculation after that seems complicated. Toward
a justification of (31), recently, an operator version of the Cole–Hopf transformation has been
presented [16]; but its mathematical foundation is not obvious.

Based on these understandings, we propose a framework in which the calculation
procedures mentioned above are formulated without any mathematical difficulties. Our
basic idea is to introduce a new decomposition of unity associated with the Cole–Hopf
transformation. As a preparation, motivated by (31), we define

z̃ ≡ z/|z| (32)

for any non-zero complex number z. In the argument below, the complex variable z is always
connected to two real variables μ and θ as

z = μ e−iθ , (33)

7
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where μ � 0 and −π � θ � π . Then, z̃ = e−iθ . By using coherent states parametrized by z

and z̃, we find a new decomposition of unity as follows:

1 =
∑

�

1

�!
|�〉〈�|

=
∑

�

1

�!�!

∫ ∞

0
dμ e−μμ�|�〉〈�|

=
∑
�,m

1

�!m!

∫ ∞

0
dμ

∫ π

−π

dθ

2π
e−μμ� e−i(�−m)θ |�〉〈m|

=
∫ ∞

0
dμ

∫ π

−π

dθ

2π
|z〉〈z̃| e−μ. (34)

We shall employ this decomposition of unity for constructing a path-integral expression.
We consider the transition probability P(nf, τ |ni, 0), which is the probability of finding

nf particles at time t = τ provided that there are ni particles at t = 0. This is expressed as

P(nf, τ |ni, 0) = 1

nf !
〈nf|e−Ĥ τ |ni〉. (35)

Its path-integral expression on the basis of (34) is written as

P(nf, τ |ni, 0) = lim
�t→0

(
τ∏

t=0

∫ ∞

0
dμt

∫ π

−π

dθt

2π

)
1

nf !
〈nf|zτ 〉

×
[

τ∏
t=�t

〈z̃t | e−Ĥ�t |zt−�t 〉 e−μt

]
e−μ0〈z̃0|ni〉. (36)

(See the appendix for the corresponding path-integral expression in terms of particle numbers
instead of coherent states.) As did in the previous section, we have 〈z̃t | e−Ĥ�t |zt−�t 〉 =
〈z̃t |zt−�t 〉 exp(−H(z̃∗

t , zt−�t )�t),where H is expressed as

H(z̃∗
t , zt−�t ) = −α((eiθt )2 − eiθt )μt−�t e−iθt−�t − β

�
(eiθt − (eiθt )2)(μt−�t )

2 e−2iθt−�t . (37)

We then note
τ∏

t=�t

〈z̃t |zt−�t 〉 e−μt =
τ∏

t=�t

exp
(−μt + μt−�t ei(θt−θt−�t )

)

=
τ∏

t=�t

e−μt +μt−�t +iμt−�t (θt−θt−�t )+O(�t2)

= e−μτ +μ0+iθτ μτ −iθ0μ0

τ∏
t=�t

e−iθt (μt−μt−�t )+O(�t2), (38)

where we have used the estimation θt − θt−� 
 O(�t). Furthermore, we have 〈nf|zτ 〉 =
znf
τ = μnf

τ e−infθτ and 〈z̃0|ni〉 = eiθ0ni . Substitution of these results into (36) yields

P(nf, τ |ni, 0) = lim
�t→0

(
τ∏

t=0

∫ ∞

0
dμt

∫ π

−π

dθt

2π

)
e−iθ0(μ0−ni)+iθτ (μτ −nf)

× 1

nf !
μnf

τ e−μτ exp[−S({iθt }, {μt })], (39)
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with

S({iθt }, {μt }) =
τ∑

t=�t

[H(z̃∗
t , zt−�t )�t + iθt (μt − μt−�t )]. (40)

Here, we perform the integrations with respect to θ0 and θτ . Noting that the limit �t → 0 is
taken in the final expression, we obtain

P(nf, τ |ni, 0) = lim
�t→0

(
τ−�t∏
t=�t

∫ ∞

0
dμt

∫ π

−π

dθt

2π

)
1

nf !
n

nf
f e−nf e−S({iθt },{μt })

∣∣∣∣
μ0=ni,μτ =nf

. (41)

This expression is exact and if one simply replaces iθt and μt with χt and νt , respectively, the
resulting action S({χt }, {νt }) is equal to the one obtained by a formal procedure with the Cole–
Hopf transformation (31). Therefore, we claim that our argument provides a mathematical
foundation for the Cole–Hopf transformation.

Now, recalling that � is a dimensionless volume of the system, we focus on the regime
nf � 1 and ni � 1 under the assumption � � 1. More explicitly, by setting ρi = ni/� and
ρf = nf/�, we assume a large deviation property

P(ρf�, τ |ρi�, 0) 
 e−�F(ρf ,τ |ρi,0), (42)

where ρi and ρf are the particle densities at initial and final times and are finite in general.
Note that the relation A(�) 
 B(�) in this paper means (log A(�) − log B(�))/� → 0 in
the limit � → ∞. The quantity F(ρf, τ |ρi, 0), which is called a large deviation function,
characterizes fluctuation properties of a density in a macroscopic system. The problem we
consider here is to derive a simpler stochastic system that reproduces F(ρf, τ |ρi, 0) defined
in (42).

Since μ0 and μτ are fixed to ρi� and ρf�, respectively, the dominant contribution of the
μt integration in (41) comes from a region μt ∼ O(�). On the other hand, since there is
the term exp(iθt (μt − μt−�t )) in the integrand, the dominant contribution of the θt integration
comes from a region θt ∼ O(1/�). From these observations, we make the transformation of
variables as ρt = μt/� and πt = �θt in the path-integral expression (41) so that the integration
over a region where ρt 
 O(1) and πt 
 O(1) provides the dominant contribution. We also
note the relation nf ! 
 n

nf
f e−nf valid for nf � 1. We then have

e−�F(ρf ,τ |ρi,0) 
 lim
�t→0

(
τ−�t∏
t=�t

∫ ∞

0
dρt

∫ ∞

−∞

dπt

2π

)
e−S̄({iπt },{ρt })

∣∣∣
ρ0=ρi,ρτ =ρf

, (43)

where S̄({iπt }, {ρt }) is expanded in terms of 1/� and �t as

S̄({iπt }, {ρt }) = (�t)

τ∑
t=�t

[
iπt�1(ρt , ρt−�t ) +

1

2�
(πt)

2�2(ρt−�t ) + R(iπt , ρt−�t )

]
(44)

with

�1(ρt , ρt−�t ) = ρt − ρt−�t

�t
− (αρt−�t − βρ2

t−�t

)
, (45)

�2(ρt−�t ) = αρt−�t + βρ2
t−�t , (46)

R(iπt , ρt−�t ) = O

(
1

�2

)
+ O(�t). (47)

The πt integration in (43) with R(iπt , ρt−�t ) in S̄ being ignored yields the formula

F(ρf, τ |ρi, 0) = lim
�t→0

min
ρi→ρf

(�t)

τ∑
t=�t

[�1(ρt , ρt−�t )]2

2�2(ρt−�t )
, (48)

9
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where minρi→ρf represents the minimization with respect to {ρt } with the boundary conditions
ρ0 = ρi and ρτ = ρf fixed. If one includes the term R(iπt , ρt−�t ) in S̄ and treats it as
a perturbation, one can show that it does not contribute to the large deviation function F .
Therefore, as far as we are concerned with the large deviation property, we may neglect
R(iπt , ρt−�t ) in S̄.

Then, by applying the same procedures as (19) and (21) in the previous section to the
expression (43) and (44), we arrive at the final result

P(ρf�, τ |ρi�, 0) 
 〈δ(ρ(τ) − ρf)〉ρ , (49)

where 〈 〉ρ represents the average over trajectories given by the Langevin equation

d

dt
ρ = αρ − βρ2 +

√
αρ + βρ2

�
· η (50)

under the initial condition ρ(0) = ρi. This result coincides with the result obtained by any
system-size expansion methods for the master equation. Since (49) holds for any τ , the
variable ρ defined by μ/� corresponds to the density in this description.

5. Effects of diffusion

In the main part of this paper, we have focused on the case where diffusion processes are
sufficiently fast. This formulation can be extended to cases with spatially heterogeneous
fluctuations. The simplest example in such systems is given by a one-dimensional lattice
model, which we shall explain.

Let � = {i|i = 0, 1, . . . , L} be a one-dimensional lattice. The reaction X � X + X

occurs on each site in the lattice, and a particle moves to a nearest-neighbor site at rate d. The
state of the system is specified by a set of particle numbers on each site, n = (n1, . . . , nL).
Boundary conditions are assumed appropriately, depending on the situation we consider. We
then write the master equation for P(n, t) and transform it to the equation for a single vector.
The time-evolution operator Ĥ in the equation for this vector is given by

Ĥ = d
∑

〈ij〉∈B

(
â
†
i − â

†
j

)
(âi − âj ) +

∑
i∈�

[−α
(
â
†
i − 1

)
â
†
i âi − β

(
1 − â

†
i

)
â
†
i â

2
i

]
, (51)

where B represents a set of all the nearest-neighbor pairs, and â
†
i and âi are introduced on each

site in a manner similar to â† and â in section 2.
Now, as a straightforward extension of the formulation discussed in section 4, we define

a real variable μi(t) which can be identified with the particle number on a site i at time t. Our
central question for this model is to derive an effective stochastic system which is defined as
the simplest description reproducing large-distance and long-time behavior. More explicitly,
the effective stochastic system might be defined by a Langevin equation which provides a
large deviation functional for the transition probability of a density field. Since the large
deviation functional is related to an effective action in the field-theoretical language [20, 21],
the question is equivalent to an identification of the fixed point in the renormalization group
flow. However, as far as we know, a concrete calculation based on such a formulation has not
yet been reported, and the large deviation functional in general cases cannot be obtained by
conventional approaches used in [1, 3].

Putting aside developing such a theoretical framework, we here present a conventional
derivation by considering a special situation. We first assume that one-site corresponds
to a coarse-grained cell in which diffusion processes are sufficiently fast so that chemical
components can be thought to be uniform in the cell. Let �x be a dimensionless physical

10
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size of the cell by setting a reaction length as unity (it thus corresponds to � in the previous
sections). As discussed in the first paragraph of section 2, we then replace β in (51) with
β̃/�x under the assumption �x � 1. We also assume that there exists a density field ρ(x, t),
0 � x � L�x, that satisfies ρ(i�x, t) = μi(t)/(�x) and supx |∂k

xρ(x, t)|(�x)k = O(εk)

with a small positive constant ε. The latter condition means that the density field is slowly
varying in space. Since the longest wavelength of fluctuations is O(L�x), ε corresponds to
1/L. We thus consider the case L � 1. By repeating the argument in section 4 with the
replacement of � with �x, one may derive

P(nfin, τ |ninit, 0) 

〈

L∏
i=1

δ

(
ρ(i�x, τ) − nfin

i

�x

)〉
ρ

, (52)

where 
 represents the equality valid asymptotically in the limit �x � 1, and 〈 〉ρ represents
the average over trajectories of a space-discretized form of the spatially extended Langevin
equation

∂ρ

∂t
= αρ − β̃ρ2 + d̃∂2

xρ +
√

αρ + β̃ρ2 · ξ1 + ∂x(

√
2d̃ρ · ξ2), (53)

under the initial condition ρ(i�x, 0) = ninit
i

/
�x. Here, we defined d̃ ≡ d(�x)2 and ξ1 and

ξ2 as noises satisfying

〈ξi(x, t)ξj (x
′, t ′)〉 = δi,j δ(x − x ′)δ(t − t ′). (54)

We note that the discretized form of (54) is

〈ξi(��x, t)ξj (�
′�x, t ′)〉 = δi,j δ�,�′

1

�x
δ(t − t ′). (55)

Although these arguments are standard, the validity of the derivation is restricted. Formally
speaking, we focus on the limiting case L → ∞, d → 0, β → 0, d/β2 
 α 
 O(1) for the
lattice model (51). It is stimulating to analyze (51) together with a renormalization group idea
so as to derive a hydrodynamic description for general cases.
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Appendix. Path probability of a particle number

The probability of a particle-number trajectory {n(t)} is also expressed within the Doi–Peliti
formalism. We briefly explain the expression in this appendix because there are no references
mentioning the result explicitly. (See [15] for a related discussion.) We start with an expression
for the probability Pn(t):

Pnf (τ ) = lim
�t→0

⎛
⎝τ−�t∏

t=�t

∞∑
nt=0

⎞
⎠(τ−�t∏

t=0

K(nt → nt+�t )

)
Pni(t)

∣∣∣∣∣∣
n0=ni,nτ =nf

, (A.1)

where K(n → m) is equivalent to the previously defined transition probability (35) applied
for a small time step �t :

K(n → m) = 1

m!
〈m|e−Ĥ�t |n〉, (A.2)
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and we used the most elementary decomposition of unity 1 = ∑∞
n=0 |n〉〈n|/n!. Rewriting

K(n → m) as

K(n → m) =
∞∑

σ=−∞

1

(n + σ)!
〈n + σ |e−Ĥ�t |n〉δm,n+σ

=
∫ π

−π

dθ

2π
e−iθ(m−n)

∞∑
σ=−∞

1

(n + σ)!
eiθσ 〈n + σ |e−Ĥ�t |n〉,

we express the transition probability during a small time interval �t as

K(n → m) =
∫ π

−π

dθ

2π
exp

[
−iθ(m − n) −

∑
σ

L(iθ, n; σ)�t

]
, (A.3)

where L(iθ, n; σ) was defined as

L(iθ, n; σ) = 1

(n + σ)!
〈n + σ |Ĥ |n〉 eiθσ . (A.4)

Expression (A.1) with (A.3) and (A.4) provides the probability of a trajectory {n(t)}. On the
basis of this expression, one may develop a system-size expansion as we did in section 4. This
formulation might be regarded as a sophisticated version of the discussion in [2].
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[21] Hochberg D, Molia-Parı́s C, Pérez-Mercader J and Visser M 1999 Phys. Rev. E 60 6343

12

http://dx.doi.org/10.1007/BF01016797
http://dx.doi.org/10.1103/PhysRevA.43.1709
http://dx.doi.org/10.1088/0305-4470/9/9/008
http://dx.doi.org/10.1088/0305-4470/9/9/009
http://dx.doi.org/10.1103/RevModPhys.70.979
http://dx.doi.org/10.1051/jphys:019850046090146900
http://dx.doi.org/10.1088/0305-4470/38/17/R01
http://dx.doi.org/10.1016/j.physrep.2003.12.001
http://dx.doi.org/10.1103/PhysRevE.59.3893
http://dx.doi.org/10.1016/S0378-4371(03)00203-6
http://dx.doi.org/10.1023/A:1010300703724
http://dx.doi.org/10.1103/PhysRevE.63.022101
http://dx.doi.org/10.1103/PhysRevE.74.030101
http://dx.doi.org/10.1016/j.physrep.2009.02.001
http://dx.doi.org/10.1103/PhysRevE.56.2597
http://dx.doi.org/10.1103/PhysRevE.73.056126
http://dx.doi.org/10.1103/PhysRevE.54.3419
http://dx.doi.org/10.1103/PhysRevE.60.6343

	1. Introduction
	2. Model
	3. Coherent-state path-integral expression
	4. Density fluctuations
	5. Effects of diffusion
	Acknowledgments
	Appendix. Path probability of a particle number
	References

